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Environment

Structures

Guidance and Control

Chemical Propulsion

Individual components of this work will be issued as separate monographs as soon as they

are completed. This document, "Entry Vehicle Control," is one such monograph. A list of
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Entry Vehicle Control

1. INTRODUCTION

Almost every spacecraft requires an active attitude stabilization and control system during

atmospheric entry to steer the vehicle in accordance with the guidance commands, to

prevent undesired vehicle oscillations, to aline the vehicle for terminal landing, and to steer
the vehicle along a flightpath where aerodynamic heating and load limitations will not be

exceeded.

Factors that influence the design of the entry-control system include

(1)
(2)
(3)
(4)

(5)
(6)
(7)
(8)
(9)

(lO)

Vehicle mass and geometric characteristics

Vehicle aerodynamic characteristics
Vehicle aerodynamic-heating characteristics, and nature of the heat shield

Payload and crew physical limitations

Initial atmospheric entry conditions

Type of moment-generation devices available

Vehicle sensing and control equipment

Attitude accuracy and speed-of-response requirements

Crew safety and mission success requirements

Guidance-system and flightpath constraints

Improper design or operation of the entry-control system can cause excessive attitude-
control propellant consumption or large landing-position errors, or cause the entry vehicle

to experience oscillatory motions that in extreme cases can cause loss of the vehicle or

failure of the terminal-landing device.

The entry-control system should make effective use of sensing, data processing, display, and

control equipment required for other mission phases, so that a minimum of additional

equipment and expendables is required for entry control. It should be as insensitive as
possible to variations in vehicle parameters, atmospheric conditions, and initial entry
conditions. It should make effective use of the crew's capability for monitoring, backup, or

manual control during entry.

This monograph is applicable to all types of entry vehicles that use aerodynamic forces for

deceleration. The entry phase of flight is assumed to begin with the orientation of the

vehicle for entry into the atmosphere and to end at 100 000 ft altitude or deployment of

the terminal-landing device.



Theentry-controlsystemisconcernedwith thevehicleattitudemotionsaboutthecenterof
mass.It is closelycoupledwith the entry-guidancesystem,which is concernedwith the
motionof the vehiclecenterof massalonga desiredflightpath.Theguidanceproblemfor
entryvehiclesiscoveredin NASASP-8015.

2. STATE OF THE ART

The state of the art of entry control is derived primarily from design, development, and

flight experience with the Mercury, Gemini, Apollo, X-15, ASSET, and PRIME vehicles, and

from preliminary design studies of advanced logistics vehicles. The entry-control systems of
these vehicles are briefly described and appraised.

2.1 Mercury Entry Control

Design of the Mercury entry-control system was strongly influenced by stringent

requirements for crew safety; the necessity to minimize power consumption and weight; the

desire for simple, highly reliable redundant modes; and an absolute requirement that the

pilot have the capability, of controlling spacecraft attitude. Information on the system

presented in references 1 to 6 is summarized below.

2.1.1 System Description and Operation

The Mercury entry vehicle was a nonlifting body that followed a ballistic trajectory in the

atmosphere. Thus, no changes in the entry flightpath were possible after retrofire. The

entry-control system was first used to establish and maintain the proper entry attitude (1.5

deg nose down). When the deceleration reached 0.05 g, an entry mode was initiated in
which pitch and yaw damping were provided to insure that oscillations would not exceed -+4

deg/sec until deployment of the drogue chute. A steady roll rate of 10 to 12 deg/sec was

maintained to minimize landing-point dispersions and equalize aerodynamic heating on the

structure.

There were four control systems on the vehicle that could be used singly or in various

combinations: a fully automatic control as provided by the automatic stabilization and

control system (ASCS), a completely manual proportional control (MP), and combinations
of automatic and manual control as provided by the rate stabilization and control system

(RSCS) or the fly-by-wire (FBW) type of manual control. All but the ASCS mode were

2
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Figure 1.-Mercury control-system functional diagram.

controlled by pilot actuation of the three-axis hand controller. A functional diagram of the

control system is shown in figure 1.

The two reaction-jet systems (A and B) were completely independent, with separate

hydrogen peroxide fuel tanks, separate fuel-flow control valves, and separate sets of jet

thrusters. The jet-thruster configurations are shown in figure 2 and table I. The ASCS and

FBW arrangements were used to control the thrusters in system A, and the MP and RSCS

modes controlled system B jets. Metered quantities of hydrogen peroxide were decomposed

in silver-plated catalyst beds in each thruster to provide the desired impulse.

In the MP system, mechanical linkages transmitted the hand-controller movements to

proportional-control valves, which regulated the flow of fuel to the thrusters. This system
required no electrical power. The RSCS used a combination of hand-controller positions and
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Table I.-Mercury Entry Control Jet Configuration

Reaction jet system A Reaction jet system B
Attitude

command Thrust Thrust
Jet (lb) Jet (lb)

Pitch up

Pitch down

Yaw right

Yaw left

Roll right

Roll left

A3/A3a

A1/Ala

A2/A2a

A4/A4a

A5

A6

24/1

24/1

24/1

24/1

6/1

6/1

B3

B1

B2

B4

B6

B5

0-24

0-24

0-24

0-24

0-6

0-6

the computing components of the automatic system to provide rate control. The FBW

system was operated by movement of the hand controller to operate the solenoid control

valves electrically. Certain control modes could be operated simultaneously, such as the

ASCS and MP, or FBW and MP, to provide complete control even with certain malfunctions

in each mode.



The ASCS included a two-degree-of-freedom directional gyro; a two-degree-of-freedom

vertical gyro; pitch-, yaw-, and roll-rate gyros; an amplifier-calibrator unit; and a 0.05 g
accelerometer switch. The outputs of the attitude and rate gyros were transmitted to the

roll, pitch, and yaw switching logic, which activated appropriate reaction-control thrusters
to maintain the desired attitude and rates. Infrared-sensing horizon scanners provided

attitude signals in roll and pitch to aline the attitude gyros.

The RSCS provided rate damping in case of ASCS failure. Control-stick motion was
transmitted to the rate damper by means of potentiometers attached to the stick. Spacecraft

angular rates were made to follow stick displacement up to a maximum of 12 deg/sec for all

axes.

The astronaut could, at any time in the mission, switch off the ASCS or RSCS and control

the capsule manually by the MP or the FBW systems. The proportional valves in the MP

system were designed to provide a linear relation between hand-controller deflection and
thrust. The astronaut, when exercising manual control, monitored attitude and attitude rate

on indicators mounted on the control panel. The FBW included provision for high or low

impulse from the thrusters. This provision allowed the astronaut to conserve fuel by using

the low-thrust position when small corrections were required.

2.1.2 Flight Experience

Control-system failures of one type or another were experienced on all but one of the six

manned Mercury flights. These failures were overcome because of the redundancy designed

into the system and the ability of the pilot to exercise attitude control manually. The

problems encountered are enumerated below without detailed comment. Further informa-

tion may be found in reference 5.

The single most prevalent malfunction in the control system during the early manned-flight

program was the intermittent failure of the small 1-1b thrusters. This failure caused early
termination of the MA-5 chimpanzee flight. In addition, during a manned suborbital flight

(MR-3) a 6-1b thruster also failed to produce thrust when required. Redesign of the
thrust-chamber assemblies (ref. 5) eliminated this problem on later flights. Horizon-scanner
measurement errors occurred because of "cold cloud" effects, and on one mission, MA-7, a

scanner circuit failure required the astronaut to establish spacecraft attitude for retrofire.
Modifications described in reference 5 eliminated these problems. Although the control

system performed satisfactorily during the MA-9 mission, an electrical short circuit that
occurred at two of the power-carrying plugs of the ASCS made it necessary to use manual

control during entry. An open circuit in the pitch-rate gyro input to the amplifier-calibrator
of the ASCS caused the MA-4 spacecraft attitude to be in error at retrofire, which in turn

resulted in a 75 n. mi. landing error.



2.2 Gemini Entry Control

The Gemini entry-control system design was based on experience gained from Mercury; it

was a more flexible system, which emphasized the pilot's control ability. Flight safety was

achieved by relying on simpler redundant systems. Information on the entry-control system

presented in references 7 to 17 is summarized in the following section.

2.2.1 System Description and Operation

One of the objectives of the Gemini program was the development of active entry flightpath

control to reach a precise landing point. The vehicle was axially symmetrical, with its center

of mass offset from the centerline as shown in figure 3. It trimmed at an angle of attack that

resulted in an average lift-drag ratio (L/D) of about 0.19. Trajectory control was

accomplished by rolling the vehicle to the right or left in response to guidance-system or

pilot commands. Zero lift was obtained (on the average) by continuously rolling the vehicle.

Negative lift was not used.

A functional block diagram of the Gemini guidance and control (G&C) system is shown in

figure 4. The control portion of the system includes the attitude-control and maneuver
electronics (ACME), entry-control jets, attitude hand controller, and attitude display group.
The ACME included two rate-gyro packages, each containing three orthogonally mounted

rate gyros.

Flightpath

0° Bank Lift vector \

Left _ Right

Centerof massoffset

Figure 3.-Gemini vehicle trim condition.
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The ACME received inputs from the hand controllers, the inertial measurement unit (IMU),

and the digital computer. It processed these signals and sent firing commands to the

appropriate thrusters. The system operated with on-off rather than proportional commands
to the thruster solenoids. This arrangement allowed the use of simple switch actuation for

manual control.

Rate signals were summed with the computer commands or IMU signals, and the output was
also fed to the switch amplifiers. A logic block provided proportional coupling of roll rates

into the yaw axis, which allowed coordinated maneuvers about the velocity vector during

entry.

Two rings (A and B) of eight 25-1b bipropellant thrusters provided attitude-control torques

about the spacecraft pitch, yaw, and roll axes during entry. Each ring of eight thrusters was

supplied by an independent propulsion system. The 16 thruster locations and firing logic are
shown in figure 5. Hypergolic propellants (monomethyl hydrazine and nitrogen tetroxide)
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Figure 5.-Gemini entry-control jet configuration.

were used to insure fast propellant ignition. The following automatic and manual attitude-

and rate-control modes were available during entry.

Rate-Command Mode

Rate-gyro outputs were compared in the ACME with hand-controller signals, and when the

difference between the two signals exceeded the damping dead zone (-+0.5 deg/sec), the

proper reaction jets were fired. It was not recommended that this mode be used during

entry because of the high propellant usage due to small deadbands.

Direct Mode

This represented a backup control mode used to provide spacecraft angular acceleration by

two methods. In the first method, switches on the hand controller provided on-off

commands directly to the thruster solenoid valves. This mode was highly reliable because no

electronic circuitry was required for its operation. In the second method, switches on the

hand controller provided signals to the ACME, which were converted to on-off commands

to the thruster solenoid valves.

Pulse Mode

The pulse mode was designed primarily to minimize propellant expenditure while

performing attitude maneuvers in the absence of external disturbance torques. In this mode,

a short-duration command signal was applied to the thruster solenoid valve when the hand



controller was deflected from its centered position. Pulses could also be obtained by using

the pulse switches. The astronauts used this mode mainly between retrofire and the 0.05 g

point to maintain the horizon in a specified orientation in the windows.

Entry Mode

The spacecraft pitch and yaw rates were automatically maintained within the damping dead

zone (-+4 deg/sec) by the ACME. The electronic circuits of the pitch- and yaw-axis control
were identical to those used in the rate-command mode except that commands were not

accepted from the hand controller. Inputs from the guidance computer kept the spacecraft

within 2 deg of the wind axis. A steady roll rate of 15 deg/sec was maintained for a zero-lift

entry.

En try Kate Command Mode

This mode was used for manual entry-attitude control ahd'had operational characteristics
identical to those of the rate-command mode, except that the damping deadbands

corresponded to the entry-mode values (-+2 deg and -+4 deg/sec), and roll-rate crossfeed was
included in the yaw channel as in the entry mode. This inclusion caused the spacecraft to

roll about the velocity vector rather than about the spacecraft roll axis. The pilot could use

the attitude display to follow the computer-generated roll angle.

2.2.2 Flight Experience

The Gemini Program included 10 manned space flights during which the entry-control

system and its operational modes were thoroughly exercised and all design objectives were
demonstrated. A summary of the entry-control modes used and pertinent flight experience

on the manned missions is given in table II.

2.3 Apollo Entry Control

Although early Apollo flights were Earth orbital, the primary emphasis in the design effort
was on the more critical lunar return mission. Information on the entry-control system is

presented in references 18 to 29.

9



Table 11. -Entry Control Mode Summary for Gemini Missions

Mission Mode Comment

3

4

10

11

12

Direct

Entry rate
command

Direct

(approximately 3 min);
rate command

Rate command

Direct

(approximately 57 sec);

Relatively high pitch and yaw rates (20 deg/sec)

Computer failure during mission. Constant 15 deg/sec roll rate

(zero lift) entry planned. After a roll rate was established

additional buildup occurred because of a pitch thruster failure.

Roll accelerations were produced as the pilot was damping initial

pitch oscillations. Increasing roll rate caused increased yaw
thruster activity to keep the yaw rate within the deadband. A

maximum 65 deg/sec roll rate was reached approx 3 min before
drogue chute deployment. Propellant almost depleted at this

time. Jet interference of aerodynamic flow has been cited as

probable cause.

One ring used. Propellant near depletion at drogue deployment

because of using rate-command (low-deadband) mode.

One ring used until all propellant was expended approximately

14 sec after max q. Second ring initiated before drogue deploy-

ment. Attributed to using low deadband mode.

One ring depleted before 125 000 ft altitude. Other ring

activated. Attributed to using low deadband mode.
rate command

Entry
rate command

Entry
rate command

Entry
rate command

Entry
rate command

(approximately)

Entry

One ring depleted early in entry because the system was used

after the separation from the Agena because of orbital system
thruster failure.

Nominal propellant usage.

Nominal propellant usage.

First automatic entry control.

Nominal propellant usage.

10



2.3.1 System Description

The Apollo command module (CM), like that of Gemini, was a symmetrical body with an
offset center of mass (LID _ 0.28). Control of the entry flightpath was accomplished by

rolling the vehicle. Although direct entries were normally planned, the supercircular entry
velocity could produce a skipout trajectory that constituted the critical design path for the

entry-control system. The functional control requirements for a skipout entry are shown in

figure 6. The control modes changed as a deceleration of 0.05 g was reached during the

initial entry, skipout, and second entry. The entry-control system parameters and their

defining requirements are presented in table III.

The overall G&C system for Apollo is shown in figure 7. Early flights in Earth orbit used the

block 1 configuration. Subsequent flights used the block 2 system. In the block 1 design,

the guidance-system signals went through the control system to operate the reaction-control

jets. With the two systems connected in this series configuration, a failure in the control

system would have incapacitated the guidance and navigation (G&N) system.

Maneuverto entry
attitudeandhold

Generateyawrateproportionalto
roll rateto insurecoordinated
maneuverswhena>0.05 g

Holdattitudeduring
skipoutfor secondentrY

Roll in toresponse

/ guidancecommands
/ for landing-point

,_ control

_ Roll to positionveloci!yvecto!as _.
_--_._ commandedby entryguidancefor

properskipoutconditions:

Dampangularmotionswhena> 0.05g

Deployd

Range

Figure 6.-Apollo entry-control functions for critical skipout trajectory.
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Table III.-Apollo Entry Control System Requirements

Parameter Value Requirement

Rate deadband

Attitude deadband:

Maximum

Minimum

Rate-to-attitude gain

Maximum commanded

roll rate

2 deg/sec

8 deg

4 deg

0.5-1/sec

22.5 deg/sec

Propellant minimization

Propellant minimization and
attitude hold for preentry

Propellant minimization

Lift-vector orientation

12



The block 2 configuration, shown in figure 7, improved utilization of the two systems and

made them electrically independent, so that a failure in one would not affect the other. In

block 2, the G&N computer assumed the primary stabilization and control tasks. A manual

and semiautomatic control system served as a backup to the primary system. With the

backup attitude reference, the control system was sufficient to allow the crew to make a

safe entry in the event of primary G&C system failure. The block 2 design illustrates the

philosophy of using two nonidentical systems to achieve functional redundancy.

The entry-control system functional diagram is illustrated in figure 8. Attitude-error and

rate-gyro feedback signals were limited to reduce the maximum maneuver rate in the
interest of fuel economy. The output of the attitude hand controller was limited for the
same reason. The switching amplifier and pseudo-rate logic provided an on-off pulse to the

engine-select logic in response to the analog error signal input. The principle of operation of

pseudo-rate logic is described in references 6 and 18. During entry (a > 0.05 g) and during
manual maneuvers, the pseudo-rate feedback was switched out to prevent an overdamped

response. The control pulse entered the jet select logic, whose primary function was to

provide electrical isolation of the jet driver circuits. The solenoid drivers applied a fixed
voltage to the engine-control solenoid valves. Each solenoid control vane had primary and

secondary coils. The primary coil provided the normal driving force. The secondary coils

Attitude
andrate
displays

f
S&Csystem

attitude

gyros

Attitude
fromG&N

system

Astronaut

[_ Attitude

hand
controller

[_ Switching Jet

Limiterand amplifier select
deadband andpseudo logic
select ratelogic

Rate

gyros

Jet
solenoid
drivers

t SystemA

reaction
control
jets

reaction
control

jets

Figure 8.-Apollo entry-control functional diagram.
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wereconnecteddirectly to the attitude hand controllers and were powered directly from

the battery, thus providing a highly reliable backup control mode.

There were three functionally identical reaction-jet control channels for roll, yaw, and pitch
control. Vehicle attitude and rate were sensed by appropriate gyros, and signals were

summed to drive switching amplifiers. Switching allowed an increase in the attitude
deadband to conserve fuel when precise control was not required. For each channel, a

switching amplifier drove a one-shot circuit that guaranteed a minimum time "on"

command to the jet drivers. This arrangement eliminated the explosion hazard present from

improper proportions of the hypergolic fuel and oxidizer. An additional coil on each
solenoid valve was driven directly from switches near the end of travel of the three-axis

attitude hand controller. These switches provide direct manual override in the event of

failure of the atuomatic system.

Manual control of the vehicle was accomplished by summing signals from the hand

controller and signals from the rate gyros to command the jet drivers. Miscellaneous

switching functions provided for disabling the attitude reference, the hand control, or the

jet drivers under certain conditions. Provision was also made for direct input commands

from the guidance computer to the jet drivers.

Instrumentation and displays included a flight direction attitude indicator (FDAI), three

needle-type indicators that displayed computed attitude error in body axes, and three

needle-type displays of spabecraft rotational rates. The FDAI consisted of a servo-driven

gimbaled ball with full and continuous rotational capabilities for display of pitch, yaw, and
roll.

The two identical and independent jet-thruster systems (A and B) are shown in figure 9.

Both systems were operated simultaneously, but each system had the capability of providing

the impulse required to perform the necessary preentry and entry maneuvers. The minimum

impulse that could be provided by a thruster was 2.0 lb-sec. Each jet developed 100 lb of
thrust.

2.3.2 System Operation

The modes of entry control are shown in figure 10. Automatic modes were available

through the digital autopilot (primary) and the control system. Attitude information was
obtained from the IMU. Rate information was obtained by differentiating the IMU gimbal

angles in the CM digital computer. Thruster commands for attitude-hold or maneuvers were

determined by logic in the computer.

14
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In the backup control system, attitude hold was accomplished by an analog system using the

body-mounted attitude gyros for attitude information and the rate gyros for rate
information when acceleration was less than 0.05 g. For entry (a > 0.05 g), roll commands

for lift-vector control were generated manually by using the entry monitoring system for

visual cues. Pitch and yaw rates were damped automatically.

An emergency mode bypassed the control-system electronics and drove the reaction-jet

valves directly. The resolution in attitude rate under manual control was about -+0.5 deg/sec.

Rates up to 25 deg/sec could be commanded. During the automatic attitude-hold mode, the

control system was capable of achieving a limit-cycle amplitude of +-0.5 deg. The deadband

could be changed to +-5.0 deg to conserve propellant. Drift rates of less than 0.2 deg/sec
about all three axes were expected. During entry (a > 0.05 g), the computer generated

thruster commands to achieve the vehicle attitude required for reaching the desired

downrange and crossrange impact point.

2.3.3 Flight Experience

Available reports on the first five Apollo missions include references 26, 27, 28, and 29. The

planned entry trajectory for Apollo 7 differed slightly from the actual one, because the lift

16



vectorwasheldat a 55degroll-rightattitude60 seclongerthanplanned.Manualcontrol
wasuseddownto about20000ft onApollo7. Controlwasthenturnedoverto thedigital
autopilot.Figure 11 showsthe propellantusedduringentry. The crew switchedto dual
reaction-controlsystem operation as shown on the figure after reporting a large,
unexplainedpitch disturbance.Thecommandedandactualroll angles,shownon figure11
as functions of time, indicate proper responseof the spacecraftto the bank-angle
commands.

Considerablepitch and yaw control activity occurredin the transonicregionduring the
final 2 min beforedroguedeploymenton Apollo 7. Groundsimulationindicatedthat this
activity wastheresultof thruster-jetinteractionswith flow aroundthevehicleandof strong
winds.

In later flights, Apollo 8, 9, 10, and 11, the entry-attitudecontrol performedwithin
nominallimits. Automaticcontrol,with the digitalautopilot,wasthemodeprimarilyused.

2.4 X-15 Entry Control

Three X-15 aircraft were used in a flight test program extending from 1958 to 1968. One of

the objectives of the program was to develop and test entry-control systems for manned
vehicles. Information on the entry-control systems, contained in references 30 to 50, is

summarized.

2.4.1 System Description

The X-15 aircraft were single-place, rocket-powered vehicles that were launched from a B-52

aircraft and self-propelled to altitudes up to 350 000 ft. They returned into the atmosphere
without thrust at mach numbers over 6. Entry presented severe control problems because of

the rapid increase in dynamic pressure. More than 190 research flights were made with the

X-15 airplanes, using four modes of reaction control and three modes of aerodynamic

control, and two airplane configurations (ventral fin on, and lower ventral fin off). When the

original ventral-fin-on configuration exhibited undesirable augmentation-off control charac-

teristics, the lower fin was removed. The stability and control and physical characteristics of

these configurations are presented in detail in references 30 through 35.

Both movable aerodynamic surfaces and jet thrusters were used to provide control torques.

The two systems had nearly equal effectiveness when the dynamic pressure q was 10 lb/ft 2 ,

but the pilots used the jet thrusters at much higher values of q because they produced pure

torques about each axis (e.g., the ailerons, while producing mainly roll torque, also
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producedsignificantyaw torque).Two of theX-15airplaneswereequippedwith three-axis
stability augmentation.The other airplanehad anadaptiverate-command-controlsystem,
designatedthe MH-96 system.Figure 12 presentsthe location of the control-system
componentsin the vehicle.The control systemis describedin detailin reference36.The
reaction-jetthrustersprovided a roll accelerationof 5 deg/sec2, and pitch and yaw
accelerationsof 2.5deg/sec2 for eachof two systems.Forpilot safety,two identicalcontrol
systemswereprovidedwhichoperatedin parallel.

Stability-Augmentation System

A functional diagram of the stability-augmentation system (SAS) is presented in figure 13.

The system, described in references 36 and 37, consisted of an electronic network or
channel for each axis. This network sensed the aircraft rate of change of pitch, roll, and yaw

and automatically provided signals to the respective servocylinders that caused the surface
actuators to move the horizontal and vertical stabilizers to oppose the airplane angular rates.

Individual servocylinder outputs and the pilot's manual inputs were combined to form a

single input to the surface actuators. The pitch and roll channels operated singly or in

combination at the pilot's discretion. Because the horizontal stabilizers were used for both

pitch and roll control, the left and right servocylinders controlled the stabilizers for both

Roll rockets

Rightpitch-roll
servocylinder

Yaw

servocylindet

No.2 systemH202tank
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Figure 12.-Location of control-system components in X-15.
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pitch and roll damping. The yaw channel operated independently of the pitch and roll

channels. The pilot had on-off and feedback gain control of the SAS, which enabled him to

vary the gains throughout the flight envelope.

The working channel drove the servocylinders. The monitor channel operated electronically

simulated servocylinders, and compared the outputs to those of the working channel. When

the difference between the servocylinder position and the simulated servocylinder position

exceeded 10 percent in any channel, a failure was signaled and the servocylinder centered

and locked, disengaging the SAS. Differences could occur because of electrical or
mechanical malfunction.

MH-96 Adaptive Control System

The adaptive flight-control system (refs. 38 to 40) used on one of the aircraft was a
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model-followingrate-commandsystem.A block diagramof the systemis shownin figure
14.Thisdiagramis for the pitch axisbut is typical of the roll andyawaxes.Theprincipal
featuresof the systemwereself-adjustinggains,rate-commandcontrolby thepilot, holdor
attitude commandmodesof operation,normal-accelerationcommandand limiting, and
automaticblendingof aerodynamicandjet reactioncontrols.

Thesystemwasinstalledsothat themechanicalconnectionlinkingthepilot's controlstick
with the surfaceactuatorswasunaltered.Manualcontrol of the unaugmentedairplanewas
unchanged.

With theairplanestabilityaugmentedby theautopilot,input wasshapedby amodelto give
the desiredresponse.A rate-gyrosignal that representedthe actual airplaneresponse
wascomparedwith theshapedpilot input.Thesignaldifferencewasthendrivento zerobya
high-gainforwardloop. Theservofeedbacksignalwasfiltered,rectified,andcomparedwith
a setpoint. Thesignof anydifferencewasusedto raisethegainif theservomotion wasless
thandesiredandlowerthegainif theservoactivitywasgreaterthandesired.
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Figure 14.-MH-96 adaptive control-system pitch mode.
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Reaction-Control System

Four types of reaction-control systems were used on the X-15 (ref. 41). The basic
reaction-control system was a pure thrust-command system, but with thrust proportional to

stick deflection outside of a dead zone of 15 percent of stick travel. A second type of

system was provided by modifying the basic reaction-control system to include reaction-rate
damping. Two types of reaction control were available to the pilot with the MH-96 control

system: a rate-command reaction control for manual control, and an attitude-hold control

loop.

The reaction-control system consisted of two independent, parallel propellant and rocket

systems operated simultaneously by a single three-axis controller. Although satisfactory
attitude control could be maintained with a pure thrust-command system, the pilot had to

give considerable attention to the control task. To decrease the X-15 piloting task in the
low-dynamic-pressure flight regions, an automatic reaction-augmentation system (RAS) was

incorporated into the basic reaction-control systems on two aircraft. The RAS was added to

only one of the two parallel reaction-control systems on each aircraft, which, in effect,
limited the RAS control authority to one half that available to the pilot, who had command

over both systems.

A block diagram of the RAS is presented in figure 15. The RAS consisted of three rate

gyros, located to sense the aircraft's rotational rates about all three body axes. The gyros
converted the vehicle's angular rates to proportional electrical signals, which were amplified

in the electronics section'of the assembly. The signal was then used to operate an on-off

solenoid control valve that controlled the flow of propellant to the rocket motors. Switches

on the controller linkages prevented opposing inputs from occurring between the RAS and

the pilot. An accelerometer unit was used to provide a signal to automatically disengage the

system during entry after normal aerodynamic effectiveness was reestablished.

2.4.2 Development and Flight Experience

The major entry-control system problems encountered during the X-15 development and

flight test program are discussed in references 42 through 50.

Limit Cycles

During early flights it was found that the SAS of X-15 caused the vehicle to oscillate at a

small amplitude and at frequencies up to 3 Hz (ref. 42). These limit cycles were most
noticeable in roll and were caused by the phase lag of hysteresis and other nonlinearities in

the mechanical portion of the control system. Although, in general, the limit cycles were
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only annoying to the pilot, analysis and experience showed that with the original electronic

filter, the limit-cycle amplitude in roll abruptly increased at certain values of loop gain and
could cause loss of control. Efforts to alleviate the problem by reducing the amount of

hysteresis were not successful. The problem was solved by using an electronic filter that

reduced the phase lag in the system during flight. A resonance problem still existed during

ground tests, however, which made it necessary to reduce the SAS gains while the vehicle

was on the ground.

Structural Resonance

This problem induced by the SAS was encountered only after the electronic filter was

changed to solve the limit-cycle problem. The problem appeared as a severe in-flight

vibration of approximately 13 Hz at 170 000 ft altitude and a dynamic pressure of 100

lb/ft 2. The vibration was limited in amplitude because of the rate limit (25 deg/sec) of the

control-surface actuator. The pilot stopped the vibration after about a minute by reducing

the pitch SAS gains. A notch electronic filter for the SAS was designed to give minimum

phase lag at limit-cycle frequencies and a maximum of attenutation at the natural

frequencies of the structure. The filter successfully eliminated surface resonance and
alleviated the limit-cycle problem. However, small-amplitude limit cycles persisted at some
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flight regimes.As a resultof the flight experiencewith themodifiedfilter, it wasclearthat
both limit-cycleproblemsandstructuralcouplinghaveto beconsideredsimultaneouslyin
theselectionof acceptablecontrol-systemfilters.

Pilot/Vehicle Lateral Control Instability

This phenomenon was observed with the X-15 simulator and later confirmed in flight

through closely controlled tests (ref. 43). Attempts to control bank angle with normal use
of aileron resulted in divergent oscillations in sideslip and roll, although the basic airplane

was considered statically and dynamically stable. During studies of the problem, in which

the X-15 flight simulator was used, it was learned that an important area in the flight

envelope was uncontrollable without dampers. In this area, the vehicle seemed to the pilot

to be dynamically unstable.

An analysis of this instability revealed the cause to be an unfavorable combination of the

yawing moment caused by aileron deflection and the dihedral effect, which was
subsequently alleviated by removing the lower moveable ventral. The change, although

producing lower static-directional stability and rudder effectiveness, resulted in a more
controllable airplane with damping augmentation inoperative, particularly at high angles of
attack. The studies of the problem indicated that extensive flight simulator tests are

necessary to define adequately the vehicle controllability boundary and the augmented

damper requirements.

System Saturation Instability

Early in the design of the adaptive controls, it was recognized that high rate commands from

the pilot could not be followed by the control-surface actuators. Servo motion would be
reflected back to the pilot's stick as stick kicks, and system instability would be experienced

because of the inability of the system to follow the commanded rate. For nearly 40 flights,

rate-limit problems were not encountered, even during entries from the highest altitudes.
However, the problem was experienced during a relatively routine flight and the airplane

became uncontrollable in roll for a short time. The flight record indicated that the servo rate

limit had been exceeded.

The incident (ref. 47) was initiated by a rather modest pitch-control command with some

roll command by the pilot. The resulting rate limiting of the servo produced sufficient

system lag to reduce the pitch-damper effectiveness and to cause the roll-command system

to go unstable. Reduced commands and adaptive gains restored the system to operational
status, and the airplane motions were again damped. Analysis of the problem showed that

the system nonlinear instability was caused by rate-limit-induced lag at low frequencies. The

problem was solved by including a simple lag-lead circuit in the servo loop to reduce the lag

at the critical low frequencies.
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Loss of Control

The 191 st X-15 flight encountered loss of control during entry, which resulted in loss of the

aircraft and pilot (ref. 50).

The accident was precipitated during the ballistic portion of the flight when the pilot

allowed the airplane to deviate in heading and subsequently flew the airplane to an extreme

attitude with respect to the flightpath that there was loss of control during the entry

portion of the flight. Destruction of the aircraft resulted from divergent aircraft oscillations

that caused the aircraft's structural limits to be exceeded.

Additional information regarding the experience with the MH-96 Adaptive Flight Control

System will be found in a forthcoming NASA Technical Note, "The Experience With the

X-15 Adaptive Flight Control System," Staff, Flight Research Center.

Pilot Opinion

All the X-15 pilots endorsed the blending of aerodynamic and reaction controls activated by

the same controller. The proportional-thrust command reaction control was not appreciated

by the pilots, nor did they use the control as a proportional-control device. In all instances,
it was used as an on-off control. The use of rate-command reaction controls resulted in

much more precise control and apparently consumed less fuel. The reaction augmentation

was appreciated by the pilots. The pilots used reaction controls to dynamic pressures several
times higher than expected. This practice resulted in the use of more reaction-control fuel

during several entries than predicted or designed for. The deadband design of 15 percent of

stick deflection was considered excessive by the pilots.

2.5 ASSET Entry Control

The unmanned Aerothermodynamic/elastic Structural Systems Environmental Tests

(ASSET) entry vehicle configuration consisted of a flat-bottomed, 70 ° delta wing and a

cone cylinder body on the upper surface. The vehicle maximum LID was 1.2 and the

W/CDA was 250 lb/ft 2. A liquid-ballast system transferred liquid mercury between forward
and aft tank_ to change the vehicle center of mass and hence the trim angle of attack.
Control forces were provided by hydrogen peroxide jets which were activated by signals

from the control-system electronics. Detailed data on the entry-control system may be

found in references 51 and 52. Data regarding related systems, SLAMAST (Scout Launched
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AdvancedMaterialsTest Bed) and another massshift control concept, are given in
references53and54,respectively.

A functionaldiagramof the ASSET G&C hardware (a modified Scout system) is shown in

figure 16. During the transition phase, when the control system helped the vehicle to attain

trim angle of attack for glide, the pitch-control loop used attitude and rate feedback with

deadbands of +0.8 deg and +2 deg/sec respectively, in conjunction with a 40-1b-thrust pitch

down jet and a 2-1b-thrust pitch up jet. The roll system employed deadbands of +0.8 deg for

position and +2 deg/sec for rate in conjunction with 15-1b jets. The yaw deadbands for the

entire flight were +0.4 deg for position and + 1 deg/sec for rate.

At the start of glide, active pitch-position control was discontinued, and a pitch-rate damper

system having a -+1 deg/sec deadband was used to attenuate large oscillations about the

vehicle trim. Two-lb thrusters were used for damping. During the glide phase, for periods of

sufficient roll airframe stability, a wide position deadband of -+6 deg was used with a -+4

deg/sec rate deadband, and during periods of marginal lateral-directional vehicle stability, a

narrow deadband of -+0.8 deg for position and -+2 deg/sec for rate were used. At various
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timesduringtheflight, dependingon thepredicteddynamicpressure,vehiclecharacteristics,
machnumber,andangleof attack,the roll andyaw jetswereswitchedbetweenthe5-and
15-1bthrustlevels.

The entry-controlsystemperformedsatisfactorilyduring five suborbitalASSETflights,
maintainingflight attitudewithin 3a designlimits down to recovery-systemdeployment.
The only flight malfunctionswereintervalometertiming errors that occurredduring the
AEV-1 and AEV-3 flights. The problemwas found to be causedby radiofrequency
interferenceon the input powerleads.Groundtestingrevealedseveralproblemsthat were
primarily componentfailures.Thesemalfunctionsoccurredin the intervalometer,poppet-
valveelectronics,andin thestabilizationunit. Descriptionsof thesefailuresandconclusions
drawntherefromaregivenin reference51.

2.6 PRIME Entry Control

The unmanned Precision Recovery Including Maneuvering Entry (PRIME) flight test

program was conducted to demonstrate the feasibility of a maneuverable vehicle capable of

recovering a small payload from low Earth orbit. Three flights were made using an SV-5D

entry vehicle with a maximum LID of 1.1 and W/CDA of 175 lb/ft 2. Pitch control by means

of a pitch flap provided downrange control. In addition, reaction jets provided control in

pitch, roll, and yaw.

A functional diagram of the PRIME G&C system is shown in figure 17. The modulation of
LID in the pitch plane controlled range of the vehicle. Modulation of' the lift vector in the

roll plane controlled crossrange maneuvering. Very little information on the PRIME

control-system description and performance is available in the unclassified literature. Some

data are presented in references 55 and 56.

2.7 Future Trends and Summary

Considerable technical literature exists on attitude-control systems not directly related to

the space flight programs discussed previously (for example, refs. 54 to 72). Emphasis is

currently being placed on the development of man-rated systems that are reusable without

major refurbishment, and systems that are versatile and adaptable to a variety of missions.

Several significant developments and trends have occurred during the evolution of

manned-spacecraft entry-control systems.
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The astronaut has been affirmed as the final control-system backup mode. Experience has
shown that provisions for manual control significantly increase mission reliability. Provision

for direct and fly-by-wire manual control and associated instrumentation and display has

been made in all manned spacecraft to date.

Current manned spacecraft use high-energy, fast-igniting hypergolic propellants, stainless

steel propellant-supply systems with helium pressurization, and thrust controls employing

on-off solenoid valves. Reliability has been the primary consideration in these choices.

Thruster switching logic has received much attention to reduce propellant consumption and

to improve the capabilities of attitude hold and rate command. Pulse-width, pulse-frequency

modulation is currently in use, with consideration being given to nonlinear pulse-ratio
modulation for future systems.
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Theuseof digital adaptive-control systems is increasing as improvements are made in the

onboard computer capabilities and in the hybrid systems necessary for this application.

A concept of functional redundancy has emerged that does not require provision for spares

or replacement parts to be carried along on a mission. Instead, the original design

incorporates two nonidentical systems that overlap functionally, so that in case of the
malfunction of one, the astronauts can complete the mission with the other. This

philosophy is exemplified in the design of the block 2 Apollo guidance, navigation, and

control systems.

For vehicles that include moveable aerodynamic-control surfaces and reaction controls, pilot

preference is for automatic blending with actuation by the same hand controller.

3. CRITERIA

The control system shall be designed to allow the entry vehicle to acquire and maintain the

desired flightpath under all anticipated mission conditions. An acceptable compromise

among performance, complexity, power consumption, propellant expenditure, weight,

volume, and reliability shall be achieved. The entry-control system shall be as insensitive as

practicable to off-nominal atmospheric and initial entry conditions and variations in vehicle

aerodynamic and mass characteristics. Crew safety shall be accorded first priority in design

decisions; however, appropriate emphasis shall be given to mission objectives.

3.1 Performance

It shall be demonstrated that control moments are adequate to maintain vehicle attitude and

to provide maneuvering rates required by the mission.

The entry-control system shall provide attitude control and maneuvering rates with specified

accuracies.

The entry-control system shall be stable. For any allowable set of initial conditions, the
deviations from the commanded flightpath and attitude should become or remain smaller

than acceptable bounds established by mission requirements. The closed-loop response shall

exhibit adequate damping and acceptable natural frequencies.

The entry-control system shall be designed to be as insensitive as possible to changes in
vehicle characteristics, control-system hardware, guidance requirements, and environmental

changes.
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The control systemshould not excite vehicle structural oscillationsthat will impair
flightworthiness.

The control logic shouldbe assimpleaspossibleto perform the requiredfunctions.It
should require as little computation time as practicableconsistentwith performance
requirements.

Thereaction-jetfuel allotted for entry shallbe commensuratewith the requiredcontrol
accuracyandsafety.

The control systemshallbe capableof maintainingthe vehicleattitude within specified
attitudeboundariesconsistentwith vehicleloadandheatingconstraints.Thetotal number
of jet firingsrequiredfor control duringentry shallbe compatiblewith duty cycle,fuel
reserveandendurancelimits of thethrusters.

3.2 Crew Safety and Flightworthiness

The designer must quantitatively demonstrate with a high level of confidence that no

characteristic of the entry-control system could compromise crew safety or impair

flightworthiness. The demonstration shall be validated through a series of analytical studies,

component tests, system tests, simulations, and flight tests. All anticipated configurations,

missions, flight conditions and.system modes of operation shall be considered.

Failure of any individual component or subsystem shall not prevent safe completion of

entry.

Equipment reliability shall meet specified mission requirements.

Malfunction-detection and system-monitoring equipment shall be provided to enable the

crew to recognize the need for a mode change prior to and during entry. All monitors and

controls shall be simple, functionally straightforward, and readily identifiable to facilitate

rapid and accurate crew performance.

All controls, switches, and displays should be designed to insure operation in the intended

manner. Interlocks should be provided to prevent inadvertent mode switching or other

improper operation. Positive safeguards should be provided to prevent any crew operations

that could have catastrophic results.
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3.3 Additional Considerations

The entry-control-system design should make effective use of sensors, computers, displays,

and other equipment that are onboard the vehicle for other mission phases. It shall be de-

signed to operate within spacecraft and total system constraints, such as weight, power,

volume, computer memory, computer execution time, and propellant weight.

The entry-control system should be of a modular design with ready accessibility for ease of

inspection, testing, and maintenance.

All interfaces (mechanical, electrical, structural, environmental, computational, crew, etc.)

should be compatible with adjoining systems.

4. RECOMMENDED PRACTICES

Procedures and recommended practices for the design of stabilization and control systems

for entry vehicles and for the analysis, simulation, and test of such systems are presented.

4.1 Statement of the Problem

It is recommended that at the inception of a spacecraft development program the designer

obtain a clear description of the functions to be performed, a definition of the system and

vehicle interfaces, a numerical specification of the required control-system performance

during entry, and reliability goals for crew safety and mission success. Quantitative control

requirements and specifications will be determined by the specific mission objectives and
mission constrained entry vehicle characteristics.

It is often not possible to define the entry-control requirements uniquely during the initial

design phase. It is important to recognize that the design and development of the spacecraft
and its subsystems will be iterative because requirements are time-variant and may change

radically, initial design constraints are generally ill defined, inherent characteristics of the

spacecraft are not well known, and basic input data for control-system design is frequently
not available when needed. Experience has shown that cost, schedule, and other constraints

often force major control-system design decisions in spite of the lack of fundamental
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information.It is recommendedthat thedesignerdevelopaphilosophyof buildingasmuch
flexibility and adaptability into the entry-controldesignaspracticableto accommodate
future contingenciesor unexpectedproblems.In practice, the acceptability of the
entry-controlsystemisoftenjudgedbyperformanceunderextremeoff-nominalconditions.

Requirementsandconstraintsshouldbeestablishedfor thetwo distinctflight phasesduring
whichtheentry-controlsystemmustoperate:

(1) The extra-atmosphericportion subsequentto retrofireor final staging,andprior to
sensibleatmospheredragdeceleration(0.05g). In this phase, the control system must

be capable of holding the required vehicle attitude within specified limits without

using excessive propellant.

(2) The atmospheric portion subsequent to 0.05 g drag and prior to entry into the
terminal landing mode. In this phase, the entry-control system must be capable of

controlling attitude and attitude rate within specified limits, and damping any vehicle

instability.

The entry-attitude and attitude-rate accuracy requirements are of fundamental importance
to the design of the entry-control system. However, the complexity of the control itself in

terms of lcdgic, signal processing, etc., will increase rapidly as the required control accuracy
increases: therefore, caution should be exercised to avoid overspecification. The angular-

acceleration requirements to perform maneuvers often determine the maximum level of

control torque to be provided by the reaction-jet system. For example, during supercircular

entry, critical roll maneuvers must be conducted in a very short time during the maximum

g-loading period to establish the proper skipout conditions. This rapid-control-response

requirement during initial entry sized the roll reaction-jet thrust magnitude for the Apollo
CM.

Other data that the entry-control designer must obtain early in the design include

preliminary estimates of vehicle geometry; inertial and hypersonic aerodynamic characteris-

tics; vehicle heating and loading limitations; time histories of typical entry-trajectory
characteristics; constraints on weight, power, and volume; and other requirements such as

those concerning vibration, mechanical, thermal, humidity, and radiation environments. It is
recommended that the sensors, computers, thrusters, and other equipment onboard the

vehicle for other mission phases be used for the entry-control system whenever possible.

Thus, it is desirable that the entry-control designer have detailed information on the total

mission G&C system as soon as it becomes available and insure that any requirements

unique to the control system are included in component specifications. In particular, such
information as reaction-jet propulsion-system data including jet interference estimates (refs.

73 and 74), propellant-weight limitations, computer memory, and execution-time con-

straints should be provided. Initially, the above information will, of necessity, be

preliminary. As the mission plan and spacecraft design progresses, this information should

be updated.
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4.2 Performance

Analytical studies, simulation studies, and tests should be conducted to insure that the
entry-control-system performance is adequate to fulfill mission requirements. The following

practices are recommended for the conduct of these studies.

4.2.1 Performance Analysis

Initial studies should be conducted to determine required performance ranges of the

entry-control system and all components, insofar as this is practicable. A dynamic
mathematical model of the spacecraft should be developed (ref. 44) that includes the

rigid-body dynamics with the kinematic representations, sensor representations, and the

complete mathematical model of the control elements.

The initial spacecraft model may include only the primary dynamic effects, neglecting such
effects as variable vehicle mass, structural flexibility, and fuel sloshing. The analysis should

involve a three-degree-of-freedom rotational model in which only the orientations and

angular velocities of the vehicles are involved. Euler equations or Quaternians, for large

flightpath angles, in nonprincipal axes for the vehicle rotational accelerations about the

yaw, pitch, and roll axes such as those used in references 56 and 75 are recommended.

Candidate entry-control systems should be formulated that use to maximum advantage

sensors, computers, displays, and thrusters already planned for installation in the vehicle for

other mission phases. These configurations should be investigated initially by linear-analysis

techniques (refs. 76 to 80), using the rigid-body dynamic model, assuming all axes

uncoupled. Minimum bandwidth consistent with performance requirements should be
selected. Gain and phase margins should be established to satisfy performance and stability

requirements. Frozen-point analyses at representative points along the entry trajectory
should be made, including such critical conditions as the maximum-dynamic-pressure point
and the maximum-heating-rate point. During these initial studies, it should be determined

which of the candidate configurations is most suitable and whether slight relaxation of

performance requirements permits significant simplification of the control system.

The stability analysis conducted at this point should employ root-locus, Bode, or Nyquist

diagram techniques (refs. 81 to 83). The analysis may be generalized to handle quasi-linear

system configurations if required (ref. 84). This analysis should investigate transient

response, steady-state control errors, the sensitivity of the candidate systems to parameter
changes, and the extent to which linear control-system techniques are applicable. Other

methods of analysis of nonlinear systems, including the methods of Lyapunor (ref. 85), may

be used in certain cases.
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Where"hard" nonlinearities(deadbands,etc.) are includedin the controller, there is no
regionof linearsystemoperation.In that event,quasi-linearization(describingfunction)or
phase-planeanalysisis performedto studythenonlinearelements(ref. 86). If thecontroller
containssampled-dataelements,it isoftennecessaryto usez-transform techniques to study

the system (ref. 81). In some cases, when the sampling frequency is high compared to other
modes of the system, the sampled-data subsystem may be analyzed as an equivalent

continuous system. Caution must be used, however, because the continuous analysis will not

display instability and poor transient response, which may be produced by the effects of a

finite sampling rate. A z-transform analysis is usually necessary if the sample frequency is

less than 10 times larger than the highest significant frequency component of the input to
the sampled-data system, or if the sampled-data output frequency can excite elements of the

control loop.

4.2.2 Simulation Studies

Simulation studies of the selected entry-control system configuration should be conducted

throughout the design, test, and operational program to insure that the system is safe and

flightworthy. The studies may begin using computer simulations and rudimentary displays
and controls. Increasing realism should be incorporated in these studies as the design

progresses. Through these studies, the effects of faulty operation of system elements, crew
errors, and off-nominal conditions should be considered to insure that all factors that might

impair safety of flight are fully understood and are appropriately eliminated.

It is recommended that a digital or hybrid six-degree-of-freedom simulation be used to
conduct these studies. Methods such as those used in reference 87 are recommended for this

simulation. The simulation should include man-in-the-loop investigations of the entry-

control system coupled with the entry-guidance system. Depending on the vehicle

configuration, effects such as structural flexibility and propellant slosh should be

investigated. As various system components become defined and available, the actual
hardware elements should be tied into the simulation. This practice will allow an

understanding and verification of the hardware and software interfaces between the

entry-control elements and other subsystems.

Parametric studies to generate technical data to be used for tradeoff decisions should be

conducted. It is recommended that the parametric investigation include a determination of

the effects of the following:

(1) Aerodynamic-coefficient uncertainties

(2) Moment-of-inertia uncertainties

(3) Principal axes misalinements

(4) Attitude- and rate-control gain

(5) Center-of-mass location

(6) Entry angle of attack
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(7)
(8)
(9)

(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)

Landing target location

Magnitude of attitude-rate commands
Attitude and rate deadbands

Roll-yaw coupling gain
Reaction-jet thrust plus interference level

Gusts and wind shears

Single-thruster failure

Single- versus dual-thruster system operation

Rate-to-attitude signal mixing ratio
Pulse-modulation methods for thrusting commands

Transonic region jet/airflow interaction

The results of the parametric investigation should be analyzed to determine the effects of

the preceding on the following:

(1) Propellant consumption during entry

(2) Maximum on-time for any thruster

(3) Number of thruster firings

(4) Touchdown accuracy of controlled entry
(5) Angle-of-attack oscillations during maximum heating, maximum dynamic pressure,

and transonic flight

(6) Tolerances on c.m. location

(7) Control-system sensitivity to landing location

(8) Limits on gain variations

With this information, decisions relative to system tradeoffs may be made.

4.2.3 Tests

The test plan should be formulated to include performance tests to insure that system and

component performance is adequate to meet all anticipated requirements, and to include

acceptance tests to insure that flight hardware conforms to design performance require-

ments.

The test plan should include such laboratory and flight tests as are required to insure that

assumptions regarding safety and effects of failure are realistic. The test plan should also

include qualification tests to demonstrate the adequacy of flightworthiness of the design.

Any interface problems must be worked out at this time to insure that the integrated system

operates as planned in all modes. Tests for electromagnetic interference effects should be

performed to verify that no such problems exist. Closed-loop operation of the system
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shouldbe checkedfor all anticipatedmissionconditions.Final softwaretestsshouldbe
conductedto verify thecompatibility of thegeneratedcommandswith theflight programs
and missionrequirements.Completeman-in-the-loopsimulationsenergizingall the actual
hardwarecomponentsof the control systemshouldbecarriedout asa final checkof the
selectedsystemconfigurations.

After all analyses,simulation,andgroundtestshavebeencompleted,a flight testprogram
shouldbeconsidered.For themannedsystem,aflight testprogramto insuresatisfactionof
the crewsafetycriteriashouldbecombinedwith otherteststo qualify structure,heatshield,
etc.,if practicable.

4.3 Crew Safety and Mission Success

Early in the design, overall crew safety and mission success goals are established. Crew safety

goals expressed in probability terms are typically on the order of 0.995 to 0.999. Mission

success goals may fall in the range of 0.90 to 0.95. The entry-control system contribution to
the overall crew safety and mission success probabilities must be determined. It is

recommended that the techniques of references 88 and 89 be used to determine the

entry-control-system contribution to crew safety and mission success. In carrying out this
analysis, the basic elements of the control system, including primary, monitor, and backup

subsystems, should be arranged into reliability logic diagrams according to their function.

From these diagrams, equations defining the probability of successful operation are derived.

Component-reliability test data are used to establish the required probabilities that
contribute to the control-system total. This analysis should be repeated throughout the

design process to verify entry-control-system compliance with the crew safety and mission

success criteria.

A failure analysis should be conducted to determine the effects of failure of each wire, joint,

terminal, etc., to insure that no single failure can impair mission completion and that no
combination of two single failures impairs flight safety. This analysis will serve to identify

potential failures and to provide a basis for determining redundancy requirements. In

considering the degree of redundancy to be used, only that amount of redundancy necessary

for meeting the reliability goals should be used. Thus, excesses in weight, size, power,

complexity, and cost will be minimized. Nonredundant designs, when compared to
redundant designs, usually result in equipment that is smaller in size and lighter in weight,

requires less power, and is less complex. However, the high reliability goals of manned

control systems and the numerous connections and dissimilar elements included in control

systems in general dictate that some degree of redundancy be used in the design. Re-
dundancy and backup provisions should be provided wherever necessary to achieve mission

reliability goals.
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Provisionshould be made for monitoring the operationalstatus of all critical system
elements.Wherevermanualswitchoveris reliedupon, information providedto the crew
shouldbe clear,easilycomprehended,legible,and entirely appropriatefor the intended
purpose.Transition betweenprimary and secondarysystemsshould be accomplished
without undesirabletransients. Interlocks should be provided whereverinadvertent
switchingcouldcompromiseflightworthiness.

Crewsafetyconsiderationsdictatethat two independentreaction-jetsystemswith separate
propellantsupplies,eachsystemadequateto insure safety of flight throughoutcritical
phasesof entry, shouldbeprovided.Flight-provenhardwareshouldbeusedwhereversuch
equipmentis compatible with reliability and safety-of-flightgoalsand other design
constraints.
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NASA SPACE VEHICLE DESIGN CRITERIA

MONOGRAPHS ISSUED TO DATE

SP-8001 (Structures)

SP-8002 (Structures)

SP-8003 (Structures)

SP-8004 (Structures)

SP-8005 (Environment)

SP-8006 (Structures)

SP-8007 (Structures)

SP-8008 (Structures)

SP-8009 (Structures)

SP-8010 (Environment)

SP-8011 (Environment)

SP-8012 (Structures)

SP-8013 (Environment)

SP-8014 (Structures)

SP-8015 (Guidance and

Control)

SP-8016 (Guidance and

Control)

Buffeting During Launch and Exit, May 1964

Flight-Loads Measurements During Launch and Exit, December
1964

Flutter, Buzz, and Divergence, July 1964

Panel Flutter, May 1965

Solar Electromagnetic Radiation, June 1965

Local Steady Aerodynamic Loads During Launch and Exit,

May 1965

Buckling of Thin-Walled Circular Cylinders, revised August
1968

Prelaunch Ground Wind Loads, November 1965

Propellant Slosh Loads, August 1968

Models of Mars Atmosphere (1967), May 1968

Models of Venus Atmosphere (1968), December 1968

Natural Vibration Modal Analysis, September 1968

Meteoroid Environment Model-1969 (Near Earth to Lunar

Surface), March 1969

Entry Thermal Protection, August 1968

Guidance and Navigation for Entry Vehicles, November 1968

Effects of Structural Flexibility on Spacecraft Control Systems,

April 1969
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SP-8017(Environment)

SP-8018(Guidanceand
Control)

SP-8019(Structures)

SP-8020(Environment)

SP-8021(Environment)

SP-8023(Environment)

SP-8024(Guidanceand
Control)

SP-8029(Structures)

SP-8031(Structures)

SP-8032(Structures)

MagneticFields-EarthandExtraterrestrial,March1969

SpacecraftMagneticTorques,March1969

Bucklingof Thin-WalledTruncatedCones,September1968

MarsSurfaceModels(1969),May 1969

Modelsof Earth'sAtmosphere(120to 1000km), May1969

Lunar Surface Models, May 1969

Spacecraft Gravitational Torques, May 1969

Aerodynamic and Rocket-Exhaust Heating During Launch and

Ascent, May 1969

Slosh Suppression, May 1969

Buckling of Thin-Walled Doubly Curved Shells, August 1969
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